

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi & Affiliated to Guru Gobind Singh Indraprastha University, Delhi)

(An ISO 9001:2015 Certified Institution)

A-4, Paschim Vihar, Main Rohtak Road, New Delhi – 110 063

Department of Information Technology

AY 2022-23

Lecture Plan

Class: 5th Sem, IT1

	ithms Design and Analysis E	TCS-301
S.No.	UNIT I Topic	# Lectures
1.	Asymptotic notations for time and space complexity	
2.	Methods for solving Recurrence relations	2
3.	Brief Review of Graphs, Sets and disjoint sets, union	2
4.	Sorting and searching algorithms and their analysis in terms of space and time complexity	2
5.	Divide and Conquer:Binary search, merge sort, Quick sort	2
6.	Strassen's matrix multiplication algorithms and analysis of algorithms for these problems.	1
	UNIT II	
7	Dynamic Programming: Ingredients of Dynamic Programming	2
8.	Matrix Chain Multiplication	$\frac{2}{2}$
9.	Longest common subsequence	2
10.	Optimal binary search trees problems, 0-1 knapsack problem	2
11.	Floyd Warshall algorithm, 0/1 knapsack problem	2
	UNIT III	
12.	Greedy Method: General method,	2
13.	Activity Selection problem	1
14.	Fractional Knapsack problem	1
15.	Huffman Codes, job sequencing with deadlines	2
16.	Minimum spanning trees, Djkstra and Bellman Ford algorithms	2
17.	Single source paths and analysis of these problems.	2
	UNIT IV	4
18.	String matching: The naive String-Matching algorithm, The Rabin-Karp Algorithm,	2
19.	String Matching with finite automata, The Knuth-Morris Pratt algorithm.	2
20.	Polynomial-time verification, NP- Completeness and reducibility,	2
21.	NP-completeness proof, NP-Hard	2
22.	Case study of NP-Complete problems (Vertex cover and clique problems)	2

Faculty Signature

PRINCIPAL
Bharati Vidyapeeth's
College of Engineering
A-4, Paschim Vihar,
New Delhi-63

HOD Signature

BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi & Affillated to Guru Gobind Singh Indraprastha University, Delhi)

(An ISO 9001:2015 Certified Institution)

A-4, Paschim Vihar, Main Rohtak Road, New Delhi – 110 063

LESSON PLAN FOR V SEMESTER A.Y 2022-23

Subject: MICROWAVE ENGINEERING Subject Code: ETEC - 302

BRANCH: ECE Credits: 4

Total Teaching Weeks in semester: 15 weeks

Total Lecture classes available: 45

S.No	Topic	Lecture (44)
	<u>Unit :1</u>	11
1	Introduction of microwaves and application of microwaves	1
2	Maxwell's equation, wave equation and their solution (in rectangular and circular coordinates), Boundary conditions, Poynting theorem,	2
3	Waveguide: Rectangular waveguide: TE and TM modes, field configurations, dominant and degenerative modes, propagation characteristics.	3
4	Power transmission and power loss in waveguide. Excitation of waveguide.	1
5	Circular waveguide: TE and TM modes, field configuration.	2
6	Introduction of planar transmission lines, micro strip line, strip line and coplanar line, comparison of coaxial, waveguide and planar transmission line.	2
	UNIT:2	<u>11</u>
7	Microwave resonators : rectangular and circular cavity resonator (resonant frequency and wavelength), Introduction of Re-entrant cavity resonator and toroidal resonator.	<u>11</u> <u>3</u>
8	Microwave Network Analysis: limitation of Z, Y and H parameters for microwave circuits, scattering matrix representation for microwave network, properties of S- matrix.	2
9	Waveguide components: E -plane Tee, H-plane - Tee, Magic-Tee, RAT-RACE circuit, application of Tee junctions, directional coupler and its application.	2

Lesson Plan

Subject Name: Advanced Control Systems

Subject Code: ETEE 403

Class: B.Tech EEE

Name of Faculty: Dr.SUDHA.K

Department: EEE Teaching Scheme: 3L + 1T Total Lecture: 42

S.No.	Unit No.	Topics Details	No. of
			Lecture
			Allotted
1		Introduction, State Space representation of Continuous LTI system	1
2	UNIT-I	Transfer Function and state variables, transfer matrix	2
3	State Space	Eigen values and vectors	1
4	A - alvaia	Solution of state equations	11
5	Analysis	Controllability and Observability	2
6		Canonical forms (CCF, OCF, DCF, JCF).	3
1		Introduction to discrete time systems	1
)2		sampling process	1
3		Z-transform and inverse Z-transforms	1
4		hold circuits	11
5	VINITE II	presentation by difference equation and its solution	11
6	UNIT-II	pulse transfer function	1
7	Discrete	transient and steady state responses, Dead beat response,	11
8	System	steady state error	1
		Representation of discrete systems in state variable form and its	2
9		solution	
10		stability of digital control system	
11		digital equivalent of conventional controller/compensator	1
1		Introduction, Non-linear system behavior and different types of non-linearities	1
2	UNIT-III	Describing function analysis, assumptions and definitions	2
3	Non-Linear	DF of common non-linearities	1
4	System	Phase Plane Analysis, singular points, construction of phase portrait,	2
5	J =	phase plane analysis of linear/non-linear systems	2
6	4	existence of limit cycles, jump phenomenon, stability analysis	2
J=_			
1		Lyapunov direct method, positive definite functions and Lyapunov functions	2
2	UNIT-	existence of Lyapunov functions, Lyapunov analysis of LTI systems	1
3	IVLyapunov	variable gradient method, Krasvoskii method, performance analysis	1
	Theory and	Popov's stability criteria.	1
4	Adaptive Introduction to basic approaches to adaptive control		
5	Control	Model reference adaptive control systems	2
6		self-tuning regulators, Applications of adaptive control	3

Faculty sign

PRINCIPAL
Bharati Vidyapeeth's
College of Engineering
A-4. Paschin, VI

Now Du 3

HOD sign

Lesson Plan

Subject Name:-Artificial Intelligence

Class:- B.Tech CSE

Subject Code: ETCS310

Department .:- CSE

Teaching Scheme: - 3L+2T

Total Lecture: - 44

S.NO.	Topics Details	No. Of
		Lecture
		Alloted
	UNIT I	
1.	Introduction to Intelligent agents: Agents and Environment, Concept of Rationality, Structure and Type of Agent.	1
2.	Problem-solving through AI: Problem formulation, uninformed search strategies, heuristics, and informed search strategies	3
3.	Solving problems by searching, state space formulation, depth first and breadth-first search, Best First Search, A* Algorithm, AO* Algorithm	4
4.	Constraint satisfaction Problem: Cryptarithmetic Puzzle	2
5.	Iterative deepening, Means-End Analysis	1
	UNIT II	
1.	Logical Reasoning: Logical agents, Knowledge-Based Agents, Logic	2
2.	Propositional logic, inferences, First-order logic, inferences in first-order logic, Syntax and Semantics of FOL,	4
3.	Propositional Vs First Order Logic.	1
4.	Forward chaining, Backward chaining,	2
5.	Unification, Resolution	2
	UNIT III	
1.	Game Playing: Adversarial Search, Scope of AI -Games, Alpha Beta Pruning.	3
2.	Theorem proving, Natural language Processing, Signification of NLP, Phases of NLP, Parsing Techniques: Top Down and Bottom up approach	3
3.	Vision and Speech Processing, Robotics,	2
4.	Expert systems, Inference Engine, Forward Chaining, Backward Chaining, Types of Expert System: Dendral, MyCin	3
5.	AI techniques- search knowledge, abstraction	1
	UNIT IV	
1.	Learning from observations: Inductive learning, learning Decision trees, Computational Learning theory,	4
2.	Explanation based learning Applications: Learning using Relevance Information	3
3.	Environmental Science, Robotics, Aerospace, Medical Sciences etc	3

PRINCIPAL
Bharati Vidyapeeth's
College of Engineering
A-4, Paschim Vihar,

New Del 4-63

Text Book:

[T1] Rich and Knight, —Artificial Intelligencell, Tata McGraw Hill, 1992

[T2] S. Russel and P. Norvig, —Artificial Intelligence – A Modern Approachl, Second Edition, Pearson Edu.

Reference Books:

[R1] KM Fu, "Neural Networks in Computer Intelligence", McGraw Hill

[R2] Russel and Norvig, "Artificial Intelligence: A modern approach", Pearson Education

Signature of Faculty

Signature of HoD

Lesson Plan

Subject Name:- Theory of Computation Class:- B.Tech CSE Subject Code: CIC-206

Department .:- CSE Teaching Scheme: -4L+2T Total Lecture: -48

S.NO.	Topics Details	No. Of Lecture Alloted
	UNIT I	Anoteu
1.	Introduction to Theory of Computation and terms like symbols, alphabets, strings. Uses and applications of Automata.	1
2.	Introduction to languages & Chomsky Classification of Language	2
3.	Finite State Systems- Basic Definitions and finite automata DFA	2
4.	Introduction to NFA, Difference between NFA and DFA.	1
5.	Conversion of NFA to DFA, Equivalent states, Minimization of DFA.	1
6.	Introduction to Regular Expressions, Algebraic Laws & Simplification of Regular expressions	2
7.	Conversion of Regular expression to NFA, and Closure properties of Regular Languages.	2
8.	Equivalence of DFA, NFA & regular expressions	1
9.	Non regular languages and Pumping lemma for Regular Sets	
	UNIT II	
1.	Grammar Introduction- Types of Grammars	1
2.	Context Free Grammar and Language, Closure properties of CFL's	1
3.	Introduction to Pushdown Automata PDA, Definitions and moves. Deterministic and Non-Deterministic PDA.	3
4.	Construction of PDA & NPDA	2
5.	Equivalence of CFG's and PDA's	2
6.	Parsing and Construction of LL(K) Grammar	2
7.	Pumping Lemma for Context free Languages and Problems on that.	1
	UNIT III	
1.	Introduction to Turing Machines & Turing Machine Model	2
2.	Variations of Turing Machines & Universal Turing Machine	1
3.	Design & Techniques of Constructing Turing Machine	1
4.	Equivalence of different Turing Machines	1
5.	Halting Problem of Turing Machine	1
6.	Introduction to Recursive & Recursively Enumerable Language and its Properties.	1
7.	Decidable & Undecidable languages. Reducible Problems With Examples	2
8.	Post Correspondence Problem and Rice's Theorem & Church's Hypothesis	2
9.	Introduction to Recursive Function Theory	1
9		
	UNIT IV	
1.	Introduction to Complexity Theory, Tractable and Intractable Problems	1
2.	Classes of Problems:- Computational, Decision and Optimization Problems.	1
3.	Class P, NP& co-NP Problem With Examples.	2
4.	Polynomial Time Reductions, NP Complete & NP Hard Problem With Proves.	2
5.	Cook-Levin Theorem, Savitch Theorem (With Proves)	2

6.	PSPACE & NPSPACE Complexity Classes	1 1
7.	Probabilistic Computation & BPP Class	1
8.	Interactive Proof Systems and IP Class	1
9.	Relativized Computation & Oracles.	1

, Textbook(s):

[T1] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Language and Computation, Pearson, 2nd Ed, 2006

[T2] Sipser, Michael. Introduction to the Theory of Computation, Cengage Learning, 2012.

References:

[R1] Peter Linz, An Introduction to Formal Languages and Automata, 5th edition, Viva Books, 2011.

[R2] J. C. Martin, Introduction to Languages and the Theory of Computation, TMH, 2nd Ed. 2004.

[R3] Maxim Mozgovoy, Algorithms, Languages, Automata, and Compilers, Jones and Bartlett, 2010.

[R4] D. Cohen, Introduction to Computer Theory, Wiley, N. York, 2nd Ed, 1996.

[R5] K. L. Mishra and N. Chandrasekharan, Theory of Computer Science: Automata, Languages and Computation, PHI, 2006.

[R6] Anne Benoit, Yves Robert, Frédéric Vivien, A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis, CRC Press, 2013.

Signature of Faculty

Signature of HoD

ACADEMIC PLAN FOR VII SEMESTER

SUBJECT: Digital Control System SUBJECT CODE: ICE-421T TOTAL LECTURE CLASSES: 42 BRANCH: ICE (7th Sem)

CREDITS: 4

Sr. no	TOPICS TO BE COVERED	TOTAL NO. OF LECTURE
FIRST T	ERM	
	UNIT - I	
	Introduction to Discrete Time Control Systems	2
1	Digital control systems, Sampling Process and its Mathematical Analysis	2
3	Quantization, Data Acquisition, Mathematical Description of the	2
4	Construction of Sampled Signals, Data Reconstruction by Polynomial	2
5	Z-Transforms, Important properties and theorems of the Z-transform, Inverse Z-Transformation	2
6	Z-transform method for solving Difference Equations, The Limitations of Z-Transform Method, Modified z transform.	2
	UNIT - II	
7	Introduction to Z- plane Analysis of Discrete-Time control systems	l
8	Impulse sampling and Data Hold circuits, Block Diagram Analysis	2
9	Transfer Functions of Closed Loop Sampled Data Systems	2
10 ·	Signal Flow Graphs of Sampled Data Systems	2
11	The pulse transfer function, Pulse transfer function of a digital PID controller	2
12	Realization of digital controllers and filters.	1
	D TERM UNIT- III	
14	Introduction to Design of Discrete Time control system by Conventional Methods	2
15	System characteristic equation, Time response, Mapping S-plane into Z-plane, Steady state accuracy	
16	Stability Techniques, Bi-linear transformation, Routh Hurwitz	
17	Root locus, Nyquist criterion, Bode diagram, interpretation of frequency response, Closed loop frequency response	2

18	State-Space Representations of Discrete-time system, Solving Discrete-time State space Equations	2			
19	Pulse Transfer function matrix, Discretization of continuous- time state space equations				
	UNIT – IV				
20	Introduction to Digital controller design	2			
21	Control system specification, Compensation	2			
22	Implementation of digital control systems using DSPs and Microcontrollers	2			
23	Large-scale industrial applications using PLCs and SCADA,	2			
24	Introduction to Discrete-event systems and Hybrid Systems	2			

Text Books:

K. Ogata, "Discrete - Time Control Systems", PEARSON, 2007

Benjamin C. Kuo, "Digital Control Systems", The Oxford Series in Electrical and Computer Engineering, 1995.

Reference Books:

G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems, Pearson Education, 3rd Edition, 2000.

Rashmi Vashisth, Kavita Singh, "Digital Control Systems", Galgotia Publications, 2013.

M. Gopal, "Digital Control and State Variable Methods", Tata McGraw-Hill Education, 2009. [R3]-

HOD (ICE)

ACADEMIC PLAN FOR IIIrd SEMESTER

SUBJECT: Engineering Electromagnetics SUBJECT CODE: ICC-205

TOTAL LECTURE CLASSES: 46

BRANCH: ICE (3rd Sem)

CREDITS: 4

Sr. no	TOPICS TO BE COVERED	TOTAL NO. OF LECTURE
First Te	rm	
UNIT -		
1	Vector Algebra and vector calculus with significance of del operators-theorems and applications	1
2	Maxwell's Equations (for static, time ,time varying fields) in integral and differential forms	1
3	Continuity equation	1
1	Boundary conditions for electric magnetic fields	
5	Programmatic solutions to Maxwell's equations using MATLAB	1
ó	Poisson's and Laplace's equations.	1
UNIT -	Π	
7	Electromagnetic waves: wave generation and equations in free space	I
3	Wave generation and equations in lossy and lossless dielectrics	1
9	Conductors skin depth – Plane wave reflection and refraction	2
10	Standing Wave – Applications	
11	Wave propagation in lossless and conducting medium	l
12	Phase and Group velocity, Reflection by a perfect conductor	11
13	Insulator, Brewster Angle, surface impedance	2
14	Guided waves and flow of power: Poynting vector and Poynting theorem, applications, power less in a conductor.	I.
SECIN) TERM	
UNIT-	II	
15	General solution for transmission lines – Equations of voltage and current,	2
16	Standing Waves and impedance transformation	2
17	Lossless and low-loss transmission lines	1
18	Meaning of reflection coefficient wavelength and velocity of propagation	2

19	Distortion less transmission line	2
20	impedance matching – quarter wave	2
21	Single stub matching, double stub matching	1
22	Power transfer, Microstrip transmission line	2
23	Smith chart.	ĭ
UNIT	- IV	
24	Rectangular waveguide	2
25	Characteristic of TE and TM waves-cutoff wavelength and phase velocity	2
26	Impossibility of TEM waves in waveguides-dominant mode	2
27	Surface currents, Attenuation, impedances	2
28	Circular wave guides-solution of field equations in cylindrical coordinates	2
29	TE and TM waves in circular guides – wave impedance and characteristic impedance	1
30	Microwave cavities: rectangular cavity resonators	2
31	Circular cavity resonators-Q-factor	1
32 .	Introduction to antenna: monopole and dipole antenna.	1

Textbooks:

- [T1] Matthew N. O. Sadiku, —Elements of Electromagnetics, Oxford University Press
- [T2] E. C. Jordon, K. G. Balman, —Electromagnetic Waves & Radiation System PHI 2nd Edition

Reference Books:

- [R1] William H. Hayt, —Engineering Electromagnetics, TMH
- [R2] J.D. Kraus, —Electromagnetics, TMH
- [R3] David K. Cheng, Field and Wave Electromagnetic, 2nd Edition, Pearson Education Asia, 2001
- [R4] John R. Reitz, —Foundations of Electromagnetic Theory I. Pearson

Signature Faculty

PRINCIPAL
Bharati Vidyapeeth's
College of Engineering
A-4, Paschim Vihor,
New Delhi-63

Signature HOD

ACADEMIC LESSON PLAN (2023)

SUBJECT: ENVIRONMENTAL STUDIES

SUBJECT CODE: BS -109

Class :- ICE

Name of faculty :- Dr. Amreeta Preetam

Dept.:- Applied Sciences

Teaching Scheme :- 3L

Total Lecture :-36

S. No.	Topics detail	No. of Lectures	Reference Book Name with Chapter & Page No.	Date	Remarks
	Unit 1 Environmental Studies: Ecosystems, B	io-div	versity and its Conservation		
1	(i) The Multidisciplinary Nature of Environmental Studies-Definition, scope and importance of Environmental Studies. Biotic and a biotic component of environment, need for environmental awareness.	1	Environmental studies by Anindita Basak UNIT-I Page No. 1-8		
2	(ii) Ecosystems Concept of an ecosystem, structure and function of an ecosystem, producers, consumers and decomposers, energy flow in the ecosystem, ecological succession, food chains, food webs and ecological pyramids.	2	Environmental studies by Anindita Basak UNIT-III Page No. 47-55		
3	Introduction, types, characteristic features, structures and function of the following ecosystem: (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries), Biogeochemical cycles	1	Environmental studies by Anindita Basak UNIT-III Page No.59-67		
4	(iii) Bio-diversity and its Conservation Introduction to biodiversity - definition: genetic, species and ecosystem diversity, Biogeographical classification of India, Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and	2	Environmental studies by Anindita Basak UNIT-IV Page No75-80		
5	Biodiversity at global, national and local levels, India as a megadiversity nation, Hotspots of biodiversity.		Environmental studies by Anindita Basak UNIT-IV Page No80-83		
6	Threats to biodiversity: Habitat loss, poaching of wildlife, man wildlife conflicts, rare endangered and threatened species		Environmental studies by Anindita Basak		

	(RET)endemic species of India, method of biodiversity conservation: In-situ and ex-situ Conservation, Bioprospecting & Biopiracy		UNIT-IV Page No83-98	
7	Natural Resources Renewable and Non-renewable Natural Resources, Concept and definition of Natural Resources and need for their management. Forest resources, Water resources, Energy resources, Land Resources, Food Resources	2	Environmental studies by Anindita Basak UNIT-II Page No15-26 Page No.27-41	
	Unit II: Environmental			
8	biosphere and Meterology, Air Quality, Control.	2	A Textbook of Environmental Studies By S Rattan, R Gadi and S. Mohapatra Page No. 189-219	
9	(b) Water Pollution: Types and Sources. (h) Pollution Prevention,	2	A Textbook of Environmental Studies By S Rattan, R Gadi and S. Mohapatra Page No. 220 to 240	
1	O Soil Pollution: Types and Control.	1	A Textbook of Environmental Studies By S Rattan, R Gadi and S. Mohapatra Page No. 257 to 261	
1	Noise Pollution: Effect, Control, Thermal Pollution., Radiation Pollution, Pollution Prevention	1	Environmental studies by Anindita basak Page. No 140 to 149 Page No. 166-167	
1	2 Solid waste Management	2	Page. No. 250 to 257	
_	Disaster Management PRINCIPAL Bharati Vidyapeeth's College of Engineering A4, Paschim Vihar New Delbuit III Social Issues and	Envir	A Textbook of Environmental Studies By S Rattan, R Gadi and S. Mohapatra Unit 11, Page No 312- 322	
	Concept of Sustainable Development; Urban problem related to energy; Water Conservation; Wasteland reclamation;	2	Environmental studies by Anindita Basak Page No 181-188	

15	Resettlement and Rehabilitation; Climate	2	Page No 189-198	
16	Change Nuclear Accidents; Consumerism and Waste Products	1	Page No. 199-201	
17	Laws related to Environment and Pollution	1	Page No 202-204	
18	Laws related to Forest and Wild life	1		
19	Environmental Impact Assessment	1	A Textbook of Environmental Studies By S Rattan, R Gadi and S. Mohapatra Unit 13, Page No. 337- 338	
	Unit IV Human Population	and E	nvironment	
20	Population Growth	2	studies by Anindita Basak Page No. 219 to 221	
21	Human Rights	1	Page No.225 to 226	_
22	Family Welfare Programmes	1	Page No. 222 to 223	
23	Environment and Human Health	1	Page No. 223 to 225	
24	HIV/AIDS	1	Page. No 226 to 228	_
25	Women and Child Welfare	1	Page No. 228-229	
26	Role of IT.	1	Page No. 229-230	_